The HasCasl Prologue: Categorical Syntax and Semantics of the Partial λ-Calculus
نویسنده
چکیده
We develop the semantic foundations of the specification language HasCasl, which combines algebraic specification and functional programming on the basis of Moggi’s partial λ-calculus. Generalizing Lambek’s classical equivalence between the simply typed λ-calculus and cartesian closed categories, we establish an equivalence between partial cartesian closed categories (pccc’s) and partial λ-theories. Building on these results, we define (set-theoretic) notions of intensional Henkin model and syntactic λ-algebra for Moggi’s partial λ-calculus. These models are shown to be equivalent to the originally described categorical models in pccc’s via the global element construction. The semantics of HasCasl is defined in terms of syntactic λ-algebras. Correlations between logics and classes of categories facilitate reasoning both on the logical and on the categorical side; as an application, we pinpoint unique choice as the distinctive feature of topos logic (in comparison to intuitionistic higher-order logic of partial functions, which by our results is the logic of pccc’s with equality). Finally, we give some applications of the model-theoretic equivalence result to the semantics of HasCasl and its relation to first-order Casl.
منابع مشابه
Dependent Cartesian Closed Categories
We present a generalization of cartesian closed categories (CCCs) for dependent types, called dependent cartesian closed categories (DCCCs), which also provides a reformulation of categories with families (CwFs), an abstract semantics for Martin-Löf type theory (MLTT) which is very close to the syntax. Thus, DCCCs accomplish mathematical elegance as well as a direct interpretation of the syntax...
متن کاملThe Logic of the Partial λ-Calculus With Equality
We investigate the logical aspects of the partial λ-calculus with equality, exploiting an equivalence between partial λ-theories and partial cartesian closed categories (pcccs) established here. The partial λ-calculus with equality provides a full-blown intuitionistic higher order logic, which in a precise sense turns out to be almost the logic of toposes, the distinctive feature of the latter ...
متن کاملA Fully Abstract Semantics for Concurrent Graph Reduction
This paper presents a fully abstract semantics for a variant of the untyped λ-calculus with recursive declarations. We first present a summary of existing work on full abstraction for the untyped λ-calculus, concentrating on ABRAMSKY and ONG’s work on the lazy λ-calculus. ABRAMSKY and ONG’s work is based on leftmost outermost reduction without sharing. This is notably inefficient, and many impl...
متن کاملExtensional Universal Types for Call-by-Value
Overview We give: 1. the λ c 2 η-calculus (and λ c 2-calculus): a second-order polymorphic call-by-value calculus with extensional universal types 2. • λ c 2 η-models: categorical semantics for λ c 2 η-calculus • monadic λ c 2 η-models: categorical semantics for λ c 2 η-calculus with the focus on monadic metalanguages like Haskell 3. relevant parametric models: domain theoretic concrete models ...
متن کاملA Categorical Semantics for The Parallel Lambda-Calculus
In this report, we define a sound and complete categorical semantics for the parallel λ-calculus, based on a notion of aggregation monad which is modular w.r.t. associativity, commutativity and idempotence. To prove completeness, we introduce a category of partial equivalence relations adapted to parallelism, in which any extension of the basic equational theory of the calculus is induced by so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005